
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 9, SEPTEMBER 1997 1619
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Abstract—This paper presents an efficient and accurate proce-
dure for computing the quasi-static matrix parameters ([C], [L],
[G], and [R]) of rectangular-shaped conductors embedded in a
multilayered dielectric medium over an infinite ground plane. An
additional top ground plane can also be considered. The problem
is formulated in terms of the space-domain integral equation for
the free-charge distribution on the slab conductor surfaces. The
spatial Green’s function is computed from its spectral counter-
part using system identification techniques [Prony’s method or
matrix pencil method (MPM)]. The integral equation is solved
by means of a Galerkin scheme employing entire domain basis
functions. This results in a small matrix size. In addition, the
quasi-analytical evaluation of the entries of the Galerkin matrix
leads to a very efficient and accurate computer code. A detailed
study on the convergence and accuracy of the method has been
included.

Index Terms—Losses, microstrip, multiconductor transmission
lines, quasi-TEM analysis, thick conductors.

I. INTRODUCTION

A LARGE amount of papers have been devoted to the
analysis of planar transmission lines throughout the last

three decades. Most of the published work assumes negligible
metallization thickness. This approximation is good enough
for many practical situations, and permits the simplification
and efficient use of the analysisad hoc mathematical tech-
niques. However, during the last few years many authors
have paid attention to the problem of accounting for the
nonzero metallization thickness. Apart from the aim of in-
creasing accuracy, this interest comes from the necessity of
analyzing the electrical behavior of the relatively thick strips
employed in monolithic microwave circuits and high-speed
digital circuits. In these cases, metallization thicknesses and
strip widths are in the same order of magnitude. Therefore, the
former can no longer be neglected. The strip thickness must
also be considered whenever tight edge coupling is present,
even though relatively wide strips are under consideration.
Moreover, the computation of ohmic conductor losses requires
explicit accountability for the strip thickness.

A number of authors have analyzed the effects of the
metallization thickness by using a full-wave analysis, but in
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this paper we are only interested in quasi-static approaches.
This is because of its comparative simplicity, which makes it
useful to develop quick microstrip solvers. Full-wave meth-
ods, except when applied to zero-thickness printed lines,
usually demand a lot of computer time. Even when a quasi-
TEM approach is used, accounting for strip-thickness effects
precludes, in principle, the use of some very efficient analyt-
ical techniques developed for zero-thickness planar structures
[1]–[3]. In principle, one might use some type of purely
numerical approach, such as the finite-difference [4] or finite-
element techniques [5]–[7]. However, even though signifi-
cant improvements have been introduced in the formulation
of those methods, they are more appropriate when dealing
with complicated geometries which cannot be analyzed with
lesser computer resource-demanding techniques. A hybrid
numerical/analytical method—the method of lines—has been
recently applied to the analysis of coupled microstrips with
finite thickness [8]. Nevertheless, solutions based on integral-
equation formulations seem to be well suited for most practical
cases if the goal is to get high accuracy with low computational
cost. Thus, arbitrary-section coupled conductors embedded in
a layered medium have been analyzed in [9] by means of an
integral-equation technique based on the free-space Green’s
function. This method was generalized in [10] to account
for nonlayered dielectrics. Important numerical improvements
on this technique have recently been reported in [11]. Other
authors prefer to use a dielectric Green’s function when
dealing with layered dielectric substrates, since the number
of unknowns is drastically reduced in this way [12]–[15].
The last five papers stressed the analytical preprocessing
of the computations so as to enhance both accuracy and
computational speed. Some other authors have reported dif-
ferent techniques to develop quick computational tools for the
quasi-TEM analysis of particular microstrip structures with
nonnegligible metallization thickness [16]–[19]. This paper fits
into this research line.

In this paper, we propose a new method that combines
the advantages of different formulations in order to build up
a quick quasi-static computer solver for rectangular-shaped
conductors embedded in a multilayered dielectric medium.
The method is based on solving the space-domain integral
equation for the free-charge distribution on the conducting
slabs. The appropriate space-domain Green’s function (the
kernel) is conveniently obtained from the spectral one by
means of system identification techniques (using the complex
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Fig. 1. The multiconductor transmission line studied in this paper. It consists
of Nc rectangular conducting slabs embedded in theM th layer of aN -layers
dielectric medium.

images concept [20]). Entire domain basis functions are used
in a Galerkin scheme with the aim of keeping the size of the
final Galerkin matrix small. In addition, the computation of
the elements of this matrix is carried out in a very efficient
way by using suitable numerical quadratures and closed-form
integration. Putting together all these elements leads to an
efficient and accurate computer code which is suitable for
quick computations even on a PC platform.

II. STATEMENT OF THE PROBLEM

Consider a multiconductor transmission line such as the
one shown in Fig. 1. An arbitrary number of rectangular-
shaped conductors are embedded inside theth dielectric
layer of a multilayered ( layers) dielectric medium. A bottom
ground plane is always present, while the top ground plane is
optional. Our main purpose is to compute, in an efficient and
accurate way, the per unit length complex capacitance matrix
of the multiconductor system (i.e., the capacitance and
conductance matrices). As is well known, the computation
of the per unit length inductance matrix reduces to the
evaluation of for the same structure without dielectrics.
Finally, by using the Wheeler’s incremental inductance rule,
we can obtain the resistance matrix of the multiconductor
system from , as shown in [21].

As stated in the Section I, there exists a wide variety of tech-
niques to compute the capacitance matrices of multiconductor
transmission systems. We have chosen to solve the integral
equation for the surface charge distribution on the rectangular
conductors. This means that an appropriate Green’s function
accounting for the multiple boundaries and the bottom (and
top) ground plates has to be computed. The spectral-domain
version of such a Green’s function can be easily obtained
owing to the layered geometry of the dielectric region (see,
for instance, the transverse transmission line (TTL) method
reported in [22] or the method in [23]). If source and field
points are inside the th layer, the spectral Green’s function

can be written in the following form:

(1)

in (1) stand for thereflection coefficientsseen from the
lower and upper surfaces bounding the th layer,
provided we are using the equivalent transmission-line model
to compute the spectral Green’s function [22]. Of course,
are known closed-form functions of the Fourier variableand
of the permittivities and thicknesses of the dielectric layers
below or above the th one. In order to recover the

-dependence of the space-domain Green’s function, a Fourier
transform inversion has to be carried out:

(2)

Apart from some particular cases, the inverse Fourier trans-
form (2) cannot be performed in closed form. However,
the -dependent functions appearing in (1) as multiplicative
factors of the exponential terms could be written as a finite sum
of complex exponentials. In this way, we could apply the ideas
reported in [20] so as to get a very close approximation to the
space-domain Green’s function. This point will be discussed in
Section III. Once the Green’s function is known, we can solve
the integral equation for the free-charge distribution by using,
for instance, the Galerkin method. In Section IV, we will give
details on the type of basis functions used in this paper and on
the techniques applied in order to speed up computations. From
the charge on the conducting slabs, we obtain the capacitance
matrix. If the electrical permittivities of the dielectric layers
are complex (dielectric losses), the elements of this matrix will
be complex. Their imaginary parts give the elements of.
On the other hand, is the inverse of the capacitance matrix
for the structure without dielectrics over ( is the speed of
light in vacuo). Finally, under strong skin-effect operation, we
can compute the per-unit-length resistance matrix, from

by using the extension to a multiconductor transmission-
line system of the Wheeler’s rule [21]. Therefore, with an
accurate method to compute complex capacitance matrices,
we will be able to obtain all the quasi-static matrix parameters
characterizing our lossy multiconductor system (including the

matrix, provided the skin effect on metals is strong).

III. COMPUTATION OF THE SPACE-DOMAIN

GREEN’S FUNCTION

Following the guidelines in [20], the space-domain Green’s
function can be usually expressed as a short summation of
terms which can be easily computed from its spectral-domain
version. The spectral Green’s function is known in closed form
for a layered structure. The basic equation underlying Chow’s
procedure is the following relationship between spectral and
spatial functions:

(3)
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where stands for Fourier transform andis a generalized
complex distance. If we can write (1) as a sum of terms such as
the ones on the right-hand side (RHS) of (3), it is clear that we
will have the space-domain Green’s function of our problem.
This can be done almost in a straightforward way by expanding
the terms by multiplying the exponentials in (1) as a sum of
complex exponentials. The arguments of the exponentials and
the coefficients of the expansion can be computed by using
spectral estimation methods. In this paper, we have used and
compared the Prony’s method employed in [20] and the MPM,
as reported in [24].

A caution should be exerted when we are considering
structures having a top ground plane in addition to the bottom
one. In such a case, the spectral functions to be approximated
are singular at the point . This behavior comes from the
following factor:

(4)

where and . A
homogeneous structure with relative permittivity having
two ground planes separated by a distancehas a spectral
Green’s function that can be expressed as follows:

(5)

The Green’s function in (5) and the original one have the
same behavior around the point. In addition, the
space-domain Green’s function for the homogeneous structure

is known in closed form:

(6)

Expression (6) can be considered as the first contribution to
the complete Green’s function of the layered structure. The
additional terms are expressed in the spectral domain as the
difference between (1) and (5). The terms of this spectral
function have no singularities at and can now be treated
without problems.

In brief and after some algebra, the spectral-domain Green’s
function for the layered structure can be written in the follow-
ing useful form:

(7)

where

(8a)

(8b)

(8c)

being

In all the above expressions in the presence of a top
ground plane, and if there is no top ground plane.

The first two terms at the RHS in (7) correspond to the
source point and the first real image. The spectral functions

can be expanded as sums of complex
exponentials. These terms can be viewed as the contributions
of certaincomplex images, following the terminology in [20].
Usually just a few of thesecomplex imagesare enough to
get a very accurate representation of the Green’s function.
Therefore, after approximating the coefficients in (8) as
short series of complex exponential functions with arguments

and amplitudes , we obtain from (3) and (7) the
following space-domain Green’s function:

(9)

where is the total number of employed complex images.
Once again, the term affected by the factorin (9) is present
only if we have a top ground plane. This term does not
present a logarithmic singularity in the definition domain
and, therefore, will not lead later to integration problems.
Nevertheless, in the computer implementation of the code, we
have extracted out not only the singular term, but also the first
two real images (reflections on the top and bottom ground
planes) in order to avoid lengthy integrations when the source
and field points are very close to the ground plates.

In order to get some insight about the features of the
approximation we are using, we include in this section some
numerical examples. Thus, Fig. 2 shows the relative error
when a typical spectral function—such as the ones found
in our problem—is approximated by an increasing number
of complex images. In this example, we have approximated
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(a)

(b)

Fig. 2. Relative error in the approximation of a typical spectral function
in our problem by using (a) Prony’s method, and (b) MPM. We present
curves for 2–5 complex images.�L(�) corresponds to a single dielectric
layer ("r = 2; h1 = 1 mm) on a perfect ground plane.

, which is the sole function to be approximated
when dealing with the standard microstrip structure. The
complex images have been found by applying Prony’s method
[Fig. 2(a)] and the MPM [Fig. 2(b)]. From these figures we
conclude that no more than four or five images are necessary to
get a very good representation of the original Green’s function
in the spectral domain and, therefore, in the space domain.
Fig. 2(b) also includes the function to be approximated. Notice
that although the Prony approximation is more accurate when

increases, the use of the MPM seems to be advisable
because this approach yields better results in the region where
the approximated function is meaningfully different from
zero. This feature has been confirmed for a large number
of numerical examples. In brief, we conclude after a lot of
numerical tests that just a few images computed with the
MPM will ensure a high-quality approximation to the required
space-domain Green’s function.

IV. A PPLICATION OF THE GALERKIN METHOD

In Section III, we have described a simple method to obtain
an approximate closed-form expression for the space-domain

Green’s function. Now we have to solve the integral equation
for the surface free-charge distribution on the rectangular
conductors by using the Galerkin method. It is well known that
the efficiency of this technique depends to a large extent on the
suitability of the chosen basis functions. In our particular case
we should use functions accounting for the singular behavior at
the metallic corners. Nevertheless, we have chosen a different
criterion. We are more interested in using functions leading
to closed-form formulas for the elements of the Galerkin
matrix in order to speed up the filling of such a matrix.
But, in addition, the number of functions needed to get a
given accuracy should be kept as low as possible. These
two goals can be achieved by using each of the faces of the
rectangular conductors or the basis functions usually employed
to approximate the charge distribution on zero thickness strips:
first-kind Chebyshev polynomials weighed by the Maxwell
distribution. In this way, for a given conducting face of width

we write

(10)

where stands for the or variable (for horizontal and
vertical conducting faces, respectively),is the middle point
of the interval where the charge density is approximated, and

is the number of retained basis functions on that face.
An important point is that the functions in (10) only partially

account for the singularities at the corners. However, they
allow us a quick filling of the Galerkin matrix. This is because
some of the required integrations can be performed in closed
form. When we use the Green’s function in the form given in
(9) and the basis functions in (10), we have to carry out the
following integrations:

(11)

where stands for or . The integrals in (11) can be written
in terms of the following one:

(12)

This integral has a closed form and can be expressed as
follows:

Case a) :

(13a)

Case b) :

(13b)
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where

(The sign before the square root is chosen in such a way that
).

We must mention here that the real part of the integral in
(12) was reported by Fikioriset al. in [1], and that we have
also essentially used the same technique to get the imaginary
part of (12).

The remaining integrations (inner products with the test
functions) can now be carried out by using low-order
Gauss–Chebyshev quadratures. If a top ground plane is present
we have to still account for the contribution of theterm
in (9). This is easily done performing a double low-order
Gauss–Chebyshev quadrature, owing to the mathematical
nature of the integrand. The final result is that the Galerkin
matrix is filled with low computational effort. This could
also be done for simple subsectional pulse or triangular basis
functions. The advantage of using the functions in (10) is that
we do not need too many of them to get very accurate results,
as will be shown in the Section V. Therefore, the Galerkin-
matrix size will be small and the overall computation time
will be low.

V. NUMERICAL RESULTS

As a first step in the analysis of the numerical behavior
of the proposed technique, we have identified the different
factors affecting the accuracy of the final results. In Section III,
we said some words about the computation of the space-
domain Green’s function. Since this function is numerically
computed by means of an approximate method, its values
will be affected by a certain error. However, this error can be
systematically reduced by increasing the number of complex
images. In fact, just a few of these images ensure a relative
error well below one part in 10 in the whole range of
interest. Another source of error of numerical type can be
found in the evaluation of the numerical quadratures needed to
compute some integrals. After a lot of numerical experiments,
we concluded that very good results will be obtained by
using a number of quadrature points exceeding in two the
order of the higher order Chebyshev polynomial used in
the basis-function’s expansion. In the case of inner products
corresponding to functions defined on touching strip segments,
this number should be increased to 10. With this choice, we
do not detect errors associated with erroneous computation of
definite integrals.

However, the main factor affecting the accuracy of the
final results is the number of basis functions retained in the
expansion of the free-charge distribution. We are interested
in getting good enough results with few basis functions so
as to keep the size of the Galerkin matrix small. Obvi-
ously, our computer code permits us to consider the case
of zero-thickness strips as a particular case. We have made
comparisons of the results provided by our code with other
practically exact results reported in the literature [1]–[3]. Our

TABLE I
C11 (+) AND C12 (�) (pF/m) FOR THE STRUCTURE IN THE

FIGURE AGAINST THE NUMBER OF BASIS FUNCTIONS ON VERTICAL

(Nt) AND HORIZONTAL (Nw) CONDUCTOR FACES. w = 1,
s = t = 0:2, h1 = 3, h2 = 2 (mm). "r1 = 2:5, "r2 = 10

program also yields virtually exact results because for the zero
thickness case, it is a quasi-analytical microstrip solver (such
as the methods reported in the cited papers), with extremely
low central processing unit (CPU) time consumption. This
excellent performance is related to the nature of the used basis
functions—which are especially suitable for zero thickness
strips—and to the analytical treatment of the computation of
the Galerkin matrix entries. Therefore, as a subproduct of our
analysis, we have an extremely efficient code for the analysis
of zero thickness coupled strips available. Nevertheless, in
the context of this paper, we are more interested in the case
of nonzero thickness strips. Therefore, we show in Table I
the convergence of the capacitance coefficients for a pair of
thick coupled microstrips. From Table I, we can see that
convergence is not so good as the one we achieved in the
analysis of zero-thickness coupled strips [2]. The reason for
this is that the employed basis functionsdo notexactly fit the
corner behavior. However, these functions are very good from
a practical point of view: two basis functions per strip side
yield results with an accuracy better than 0.3%. Of course,
the number of basis functions has to be increased when
the geometry is more critical (for example, when coupling
between the strips is extremely strong or in other geometrically
complicated situations). Nevertheless, we usually obtain very
good results with just a few basis functions per strip side.
Getting similar accuracy with subsectional-type basis functions
would require many more basis functions, therefore increasing
the CPU time.

After analyzing the convergence of the method, it is in-
teresting to check the typical attainable accuracy using some
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TABLE II
Z0 OF A SYMMETRICAL SHIELDED SLAB LINE Nw;t IS THE

NUMBER OF BASIS FUNCTIONS W = SLAB WIDTH. t = SLAB

THICKNESS b = SEPARATION BETWEEN GROUND PLATES

appropriate benchmark. We can use as a benchmark the
rectangular slab symmetrically placed between two infinite
ground planes, since for this structure there exists an ana-
lytical solution. Table II shows the comparison between exact
solutions taken from [25] (conformal mapping approach) and
numerical values computed with our method. It is clear from
this table that our method can provide very high accuracy if
we use enough basis functions. However, even using just one
function on each side of the slab, we get results within a 0.4%
error except for the worst case ( ), where the error
is around 1.5%. In this case, using just one more function on
the long sides of the slab results in a drastic improvement
of the accuracy (less than 0.02% error). Other comparisons
have been made with some exact results reported in [26] with
similar conclusions. Convergence to the correct value has then
been demonstrated. Note that this point is important since
our basis functions do not exhibit the rigorously correct edge
behavior.

In [19], the author presents a technique based on spectral-
domain analysis (SDA) to compute the quasi-static parameters
of boxed coupled strips of arbitrary thickness. We have made
comparisons with the results reported in [19] and we have
found very good agreement. In particular, we have computed
the modal parameters of two very tightly coupled strips, which
cannot be efficiently treated by using the simple multistrip
model reported in [15] (as was claimed in [19]). Our results are
very accurate for this case even using only two basis functions
on the faced sides of the strips and one on the remaining sides
(0.2% error). This results in CPU times much shorter than
the ones reported in [19] (ours is below 1 s on a 66-MHz
pentium-based PC).

Our program can be used to calculate the resistance matrix
of the multiconductor system just applying the Wheeler’s

rule, such as discussed in [21]:

where is the surface resistance of the metal, is the
inductance matrix, and is the coordinate variable normal to
the conductor surface. The derivative is numerically computed,
so we only need to accurately compute. Table III shows
the normalized resistance for a rectangular slab on a ground

TABLE III
NORMALIZED RESISTANCE OFRECTANGULAR SLAB OVER GROUND PLANE AS A

FUNCTION OF THE NUMBER OF BASIS FUNCTIONS (nf) ON EACH STRIP SIDE

AND OF THE �� INCREMENT USED IN THE NUMERICAL DERIVATION SLAB WIDTH

= 2a, SLAB THICKNESS= a, DISTANCE TO GROUND PLANE = a

Fig. 3. Attenuation factors for the fundamental quasi-TEM modes of the
four microstrips system analyzed in [27]. Strip widths:w1 = w4 = 0:6
mm, w2 = w3 = 0:3 mm, separation between strips:s1 = s3 = 0:3 mm,
s2 = 0:2 mm, strip thickness:t = 0:01 mm, substrate thickness:h = 0:635
mm, height to cover:d = 6:0 mm, " = 9:8"0; � = 5:1 � 107 S/m

plane as a function of the number of basis functions used on
each strip side. The result is close to the one reported in [13]

. We have included several columns to
show how the increment used to numerically perform the
derivation affects the final result. We can typically choose
around 10 times the smallest dimension of the conductor.
The result remains stable for lower values of . Note that
the derivative is very accurately computed even though the
original function is affected by a certain error, since this is
a systematic error that affects in the same magnitude the
two values of the function required to numerically perform
the derivation. Recently, Gentiliet al. [27] have reported a
technique to compute the modal attenuation factors

for a multiconductor line. The values of the
parameters can be readily obtained from the characteristic ma-
trices computed in this paper. This way, we have compared our
results with those reported in [27], with very good agreement.
For instance, we show in Fig. 3 the four modal attenuation
factors corresponding to the fundamental modes supported by
a four-coupled-strip lossy system. Our results are very close
to the ones computed by the method proposed by Gentili
et al. (slight differences could be attributed to the side walls
considered in that paper), but some important discrepancies
have been found when comparing the results computed by
means of a finite-element-based code.
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TABLE IV
COEFFICIENTS OF[C], [L], AND [R] FOR THE FIVE CONDUCTORS’ STRUCTURE IN THE FIGURE. w = 3, s = 2, h = 1, t = 1 (mm), "r1 = 2, "r2 = 1.

Finally, Table IV shows the elements of and for
a five-coupled-strip system. All the figures in Table IV are
correct. We have used 15 basis functions on each strip side,
i.e., a total of 300 basis functions, to ensure the accuracy of
these results. This results in a computation time of 75 s on
a Pentium PC/66 MHz. However, accuracy better than 0.2%
for all the matrix elements is achieved by using five functions
and 13 s of CPU time. If an error in the order of 1% can be
tolerated, we only have to use two functions per strip side. We
have completed Table IV, including the normalized resistance
matrix elements.

VI. CONCLUSIONS

This paper describes an efficient and accurate technique
to compute the quasi-static matrix parameters (, , ,

) of a system of rectangular cross-section coupled con-
ductors embedded in a layered dielectric medium. Accu-
racy and numerical efficiency are achieved by means of
two main issues. First, we use entire domain basis func-
tions to approximate the free surface-charge distribution on
the strips. These functions allow us to keep the Galerkin
matrix size small when compared with typical matrix size
associated with the use of subsectional functions. Second,
we get quasi-analytical evaluation of the integrals defining
the Galerkin-matrix entries. This has been done by taking
advantage of the use of the complex image concept and
the mathematical properties of the employed basis functions.
Any spectral estimation technique can be used to compute
the complex images, but the MPM seems to perform better
than Prony’s method. The final product is an accurate and
quick computer code that permits one to analyze under quasi-
TEM assumption a variety of transmission lines consisting of
coupled rectangular conducting slabs. The performance of the
code has been exhaustively checked by making convergence
tests and comparisons with other techniques, some of which
have been included in Section V. Note that although in this
paper it has been assumed that all the strips were embed-
ded in the same dielectric region, a more general situation

can be treated by applying the same general ideas reported
here.

REFERENCES

[1] J. G. Fikioris, J. L. Tsalamengas, G. J. Fikioris, “Exact solutions for
shielded printed microstrip lines by the Carleman–Vekua method,”IEEE
Trans. Microwave Theory Tech., vol. 37, pp. 21–33, Jan. 1989.

[2] E. Drake, F. Medina, M. Horno, “Improved quasi-TEM spectral domain
analysis of boxed coplanar multiconductor microstrip lines,”IEEE
Trans. Microwave Theory Tech., vol. 41, pp. 260–267, Feb. 1993.

[3] D. Homentcovschi, G. Ghione, C. Naldi, R. Oprea, “Analytic determi-
nation of the capacitance matrix of planar or cylindrical multiconductor
lines on multilayered substrates,”IEEE Trans. Microwave Theory Tech.,
vol. 43, pp. 363–372, Feb. 1995.

[4] H. E. Green, “The numerical solution of some important transmission-
line problems,”IEEE Trans. Microwave Theory Tech., vol. MTT-13, pp.
676–692, Sept. 1965.

[5] Z. Pantic and R. Mittra, “Quasi-TEM analysis of microwave transmis-
sion lines by the finite-element method,”IEEE Trans. Microwave Theory
Tech., vol. MTT-34, pp. 1096–1103, Nov. 1986.

[6] J. M. Gil and J. Zapata, “Efficient singular element for finite element
analysis of quasi-TEM transmission lines and waveguides with sharp
metal edges,”IEEE Trans. Microwave Theory Tech., vol. 42, pp. 92–98,
Jan. 1994.

[7] Z. Pantic and R. Mittra, “Higher-order infinite elements for quasi-
TEM analysis of microwave transmission lines using the finite-element
method,” Microwave Opt. Technol. Lett., vol. 9, no. 5, pp. 244–249,
Aug. 1995.

[8] A. Papachristoforos, “Method of lines for analysis of planar conductors
with finite thickness,”Proc. Inst. Elect. Eng.—Microwaves, Antennas,
Propagat., vol. 141, no. 3, pp. 223–228, June 1994.

[9] C. Wei, R. F. Harrington, J. R. Mautz, and T. K. Sarkar, “Multicon-
ductor transmission lines in multilayered dielectric media,”IEEE Trans.
Microwave Theory Tech., vol. MTT-32, pp. 439–450, Apr. 1984.

[10] J. Venkataraman, S. M. Rao, A. R. Djordjevic, T. K. Sarkar, and
Y. Naiheng, “Analysis of arbitrarily oriented microstrip transmission
lines in arbitrarily shaped dielectric media over a finite ground plane,”
IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp. 952–959, Oct.
1985.

[11] M. B. Bazdar, A. R. Djordjevic, R. F. Harrington, and T. K. Sarkar,
“Evaluation of quasi-static matrix parameters for multiconductor trans-
mission lines using Galerkin’s method,”IEEE Trans. Microwave Theory
Tech., vol. 42, pp. 1223–1228, July 1994.

[12] W. Delbare and D. De Zutter, “Space-domain Green’s function approach
to the capacitance calculation of multiconductor lines in multilayered
dielectrics with improved surface charge modeling,”IEEE Trans. Mi-
crowave Theory Tech., vol. 37, pp. 1562–1568, Oct. 1989.

[13] F. Olyslager, N. Fach́e, and D. de Zutter, “New fast and accurate line
parameter calculation of general multiconductor transmission lines in
multilayered media,”IEEE Trans. Microwave Theory Tech., vol. 39, pp.
901–909, June 1991.



1626 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 9, SEPTEMBER 1997

[14] K. S. Oh, D. Kuznetsov, and J. E. Schutt-Aine, “Capacitance compu-
tations in a multilayered dielectric medium using closed-form spatial
Green’s functions,”IEEE Trans. Microwave Theory Tech., vol. 42, pp.
1443–1453, Aug. 1994.

[15] G. Plaza, F. Mesa, and M. Horno, “Quick computation of[C], [L],
[G], and[R] matrices of multiconductor and multilayered transmission
systems,”IEEE Trans. Microwave Theory Tech., vol. 43, pp. 1623–1626,
July 1995.

[16] V. Rizzoli, “Highly efficient calculation of shielded microstrip structures
in the presence of undercutting,”IEEE Trans. Microwave Theory Tech.,
vol. MTT-27, pp. 150–157, Feb. 1979.

[17] E. Drake, F. Medina, and M. Horno, “Quasi-TEM analysis of thick
multistrip lines using an efficient iterative method,”Microwave Opt.
Technol. Lett., vol. 5, no. 10, pp. 530–534, Sept. 1992.

[18] G. G. Gentili and G. Macchiarella, “Quasi-static analysis of shielded
planar transmission lines with finite metallization thickness by a mixed
spectral-space domain method,”IEEE Trans. Microwave Theory Tech.,
vol. 42, pp. 249–255, Feb. 1994.

[19] J.-T. Kuo, “Accurate quasi-TEM spectral domain analysis of single and
multiple coupled microstrip lines of arbitrary metallization thickness,”
IEEE Trans. Microwave Theory Tech., vol. 43, pp. 1881–1888, Aug.
1995.

[20] Y. L. Chow, J. J. Yang, and G. E. Howard, “Complex images for
electrostatic field computation in multilayered media,”IEEE Trans.
Microwave Theory Tech., vol. 39, pp. 1120–1125, July 1991.

[21] G. Plaza, F. Mesa, and M. Horno, “Spectral domain analysis of con-
ductor losses in a multiconductor system via the incremental inductance
rule,” Electron. Lett., vol. 30, no. 17, pp. 1425–1427, Aug. 1994.

[22] R. Crampagne, M. Ahmadpanah, and J.-L. Guiraud, “A simple method
for determining the Green’s function for a large class of MIC lines hav-
ing multilayered dielectric substrates,”IEEE Trans. Microwave Theory
Tech., vol. MTT-26, pp. 82–87, Feb. 1978.

[23] F. Medina and M. Horno, “Upper and lower bounds on mode ca-
pacitances for a large class of anisotropic multilayered microstrip-like
transmission lines,”Proc. Inst. Elect. Eng.—Microwaves, Antennas,
Propagat., vol. 132, pt. H, no. 3, pp. 157–163, June 1985.

[24] T. K. Sarkar and O. Pereira, “Using the matrix pencil method to estimate
the parameters of a sum of complex exponentials,”Antennas Propagat.
Mag., vol. 37, no. 1, pp. 48–55, Feb. 1995.

[25] H. J. Riblet, “An approximation for the characteristic impedance of
shielded-slab lines,”IEEE Trans. Microwave Theory Tech., vol. MTT-27,
pp. 557–559, June 1979.

[26] J. R. Nortier, “Calculation of the interaction between the fringing
capacitance of symmetrical stripline using the finite element method,”
IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp. 191–193, Jan.
1986.

[27] G. G. Gentili and A. Melloni, “The incremental inductance rule in quasi-
TEM coupled transmission lines,”IEEE Trans. Microwave Theory Tech.,
vol. 43, pp. 1276–1280, June 1995.

Joaquı́n Bernal was born in Sevilla, Spain, in 1971.
He received theLicenciadodegree in physics from
the University of Seville, Spain, in 1994, and is
currently working toward the Ph.D. degree.

His research interests focus on the analysis of
planar structures for integrated microwave circuits.

Francisco Medina was born in Puerto Real,
Cádiz, Spain, in November, 1960. He received the
Licenciadoand the Doctor degrees, both in physics,
from the University of Seville, Seville, Spain, in
1983 and 1987, respectively. From 1986 to 1987,
he spent the academic year at the Laboratoire de
Microondes de l’ENSEEIHT, Toulouse, France, on
scholarship from MEC-MRT.

From 1985 to 1989, he was an Assistant
Professor in the Department of Electronics and
Electromagnetics, University of Seville, and since

1990, he has been a Profesor Titular (Associate Professor) of electromagnetics.
His research deals mainly with analytical and numerical methods for planar
structures and circuit applications of multiconductor lines.

Dr. Medina was a member of the Technical Programme Committee of the
23rd European Microwave Conference, Madrid, Spain, in 1993.

Manuel Horno (M’75) was born in Torre del
Campo, Ja´en, Spain. He received theLicenciado
and the Doctor degrees, both in physics, from the
University of Seville, Seville, Spain, in 1969, and
1972, respectively.

Since 1969, he has been with the Department
of Electronics and Electromagnetism, University of
Seville, where he became an Assistant Professor
in 1970, Associate Professor in 1975, and Full
Professor in 1986. His main fields of interest include
boundary value problems in electromagnetic theory,

wave propagation through anisotropic media, and microwave integrated
circuits. He is presently engaged in the analysis of planar transmission
lines embedded in complex materials, multiconductor transmission lines, and
printed antennas.

Dr. Horno is a member of the Electromagnetism Academy, Massachusetts
Institute of Technology (MIT), Cambridge.


