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Quick Quasi-TEM Analysis of Multiconductor
Transmission Lines with Rectangular
Cross Section
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Abstract—This paper presents an efficient and accurate proce- this paper we are only interested in quasi-static approaches.
dure for computing the quasi-static matrix parameters (C], [L], ~This is because of its comparative simplicity, which makes it
[G], and [R]) of rectangular-shaped conductors embedded in @ ;55| to develop quick microstrip solvers. Full-wave meth-

multilayered dielectric medium over an infinite ground plane. An d h lied hick inted Ii
additional top ground plane can also be considered. The problem ods, except when applied to zero-thickness printed lines,

is formulated in terms of the space-domain integral equation for usually demand a lot of computer time. Even when a quasi-
the free-charge distribution on the slab conductor surfaces. The TEM approach is used, accounting for strip-thickness effects

spatial Green’s function is computed from its spectral counter- precludes, in principle, the use of some very efficient analyt-

part using system identification techniques [Prony’s method or . : i
matrix pencil method (MPM)]. The integral equation is solved ical techniques developed for zero-thickness planar structures

by means of a Galerkin scheme employing entire domain basis [1]—[3]: In principle, one might use some type of pu-relly
functions. This results in a small matrix size. In addition, the numerical approach, such as the finite-difference [4] or finite-

quasi-analytical evaluation of the entries of the Galerkin matrix element techniques [5]-[7]. However, even though signifi-
leads to a very efficient and accurate computer code. A detailed cgnt improvements have been introduced in the formulation
i‘?gﬁ}éjgg the convergence and accuracy of the method has beer'of those methods, they are more appropriate when dealing
with complicated geometries which cannot be analyzed with
lesser computer resource-demanding techniques. A hybrid
numerical/analytical method—the method of lines—has been
recently applied to the analysis of coupled microstrips with
|. INTRODUCTION finite thickness [8]. Nevertheless, solutions based on integral-

LARGE amount of papers have been devoted to teguation formulations seem to be well suited for most practical
Aanalysis of planar transmission lines throughout the 1a&#Ses if the goal is to get high accuracy with low computational
three decades. Most of the published work assumes negligiBR$t: Thus, arbitrary-section coupled conductors embedded in
metallization thickness. This approximation is good enoughlayered medium have been analyzed in [9] by means of an
for many practical situations, and permits the simplificatiofftegral-equation technique based on the free-space Green's
and efficient use of the analysi& hoc mathematical tech- function. This method was generalized in [10] to account
niques. However, during the last few years many authd@ nonlayered dielectrics. Important numerical improvements
have paid attention to the problem of accounting for thfen this technique have recently been reported in [11]. Other
nonzero metallization thickness. Apart from the aim of induthors prefer to use a dielectric Green's function when
creasing accuracy, this interest comes from the necessityd§gling with layered dielectric substrates, since the number
analyzing the electrical behavior of the relatively thick strip8f unknowns is drastically reduced in this way [12]-{15].
employed in monolithic microwave circuits and high-speefihe last five papers stressed the analytical preprocessing
digital circuits. In these cases, metallization thicknesses aftithe computations so as to enhance both accuracy and
strip widths are in the same order of magnitude. Therefore, themputational speed. Some other authors have reported dif-
former can no longer be neglected. The strip thickness mi@tent techniques to develop quick computational tools for the
also be considered whenever tight edge coupling is preseiiasi-TEM analysis of particular microstrip structures with
even though relatively wide strips are under consideratioronnegligible metallization thickness [16]-[19]. This paper fits
Moreover, the computation of ohmic conductor losses requirégo this research line.
explicit accountability for the strip thickness. In this paper, we propose a new method that combines

A number of authors have analyzed the effects of ttibe advantages of different formulations in order to build up
metallization thickness by using a full-wave analysis, but ia quick quasi-static computer solver for rectangular-shaped

_ _ _ . conductors embedded in a multilayered dielectric medium.
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Optional ground plane can be written in the following form:

= 1

G =

(a|y7 4 ) 204506]\4(1 - FLFUG_QO‘}LM)
+ 6—04|y—y,| + ]_"L]_"Uea(|y—y,|—2hM)
+ Dyetuty'=2han], @)

[FLe—a(y-I-y’)

'z in (1) stand for theeflection coefficientseen from the
lower (L) and upper(U/) surfaces bounding tha/th layer,
provided we are using the equivalent transmission-line model
to compute the spectral Green’s function [22]. Of coulsey,

are known closed-form functions of the Fourier variabland

of the permittivities and thicknesses of the dielectric layers
below (L) or above(U) the Ath one. In order to recover the
z-dependence of the space-domain Green's function, a Fourier
transform inversion has to be carried out:

1 > ~ . ,
Gz, 2 [y, ) = —/ daGlaly, y)e*E=) . (2)

Fig. 1. The multiconductor transmission line studied in this paper. It consists 27
of N, rectangular conducting slabs embedded inthth layer of aN-layers ) ) ]
dielectric medium. Apart from some particular cases, the inverse Fourier trans-

form (2) cannot be performed in closed form. However,

images concept [20]). Entire domain basis functions are us’%‘(? a-dependent functions appearing in (1) as multiplicative

in a Galerkin scheme with the aim of keeping the size of t %ctors Olf the exponefnt;al Itertra_s could be wnt:zn asla {lr?lt'edsum
final Galerkin matrix small. In addition, the computation of! cOMpiex exponentials. In this way, we could apply he ideas

the elements of this matrix is carried out in a very eﬁicier{Fported n [_20] S0 as, to get_a very_closg approxm_atlon to the
ace-domain Green’s function. This point will be discussed in

way by using suitable numerical quadratures and closed-fo : , T
ction Ill. Once the Green'’s function is known, we can solve

integration. Putting together all these elements leads to ) . S !
efficient and accurate computer code which is suitable f e.|ntegral equation fOF the free-charge d'|str|but|on bY using,
quick computations even on a PC platform. or mstance, the Galerkln_methoq. In Sectlc_)n I\(, we will give
details on the type of basis functions used in this paper and on
the techniques applied in order to speed up computations. From
[I. STATEMENT OF THE PROBLEM the charge on the conducting slabs, we obtain the capacitance

Consider a multiconductor transmission line such as t}laréatrix. If the electrical permittivities of the dielectric layers

one shown in Fig. 1. An arbitrary numbé¥, of rectangular- are complex (dielectric losses), the elements of this matrix will
shaped conductors are embedded inside M dielectric be complex. Their imaginary parts give the elementjGit

layer of a multilayeredy layers) dielectric medium. A bottom On the other handL| is the inverse of the capacitance matrix

ground plane is always present, while the top ground planef% the structure without dielectrics ovef (¢ is the speed of

optional. Our main purpose is to compute, in an efficient aAi(ght in vacuo). Finally, ur?der strong §kin-effect opgration, we
accurate way, the per unit length complex capacitance matjj n compute the per-uplt-length resptance mafiitk fro.m .

of the multiconductor system (i.e., the capacitaic and L by using the extension to a multiconductor transm_lssmn—
conductancéG| matrices). As is well known, the computationIIne system of the Wheeler's rule [21]. There_:fore, with an
of the per unit length inductance matrjk] reduces to the accurate method to compute complex capacitance matrices,
evaluation of[C] for the same structure without dielectrics/€ Wil be_ "’_‘b'e to obtain all the quasi-stafic matrix parameters

Finally, by using the Wheeler's incremental inductance rul haracterizing our lossy multiconductor system (including the

’ | matrix, provided the skin effect on metals is strong).

we can obtain the resistance matrix of the multiconduct
system[R] from [L], as shown in [21].

As stated in the Section |, there exists a wide variety of tech- [1l. COMPUTATION OF THE SPACE-DOMAIN
niques to compute the capacitance matrices of multiconductor GREEN'S FUNCTION
transmission systems. We have chosen to solve the integratollowing the guidelines in [20], the space-domain Green’s
equation for the surface charge distribution on the rectangufahction can be usually expressed as a short summation of
conductors. This means that an appropriate Green’s functi@ims which can be easily computed from its spectral-domain
accounting for the multiple boundaries and the bottom (aR@rsion. The spectral Green’s function is known in closed form
top) ground plates has to be computed. The spectral-domgip a layered structure. The basic equation underlying Chow’s
version of such a Green’s function can be easily obtaingglocedure is the following relationship between spectral and
owing to the layered geometry of the dielectric region (segpatial functions:
for instance, the transverse transmission line (TTL) method o
reported in [22] or the method in [23]). If source and field F —%111((3:—3:’)2 +u?)| = ¢ (3)

points are inside thé{th layer, the spectral Green’s function 7f o
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where F stands for Fourier transform andis a generalized where
complex distancdf we can write (1) as a sum of terms such as

the ones on the right-hand side (RHS) of (3), it is clear that we Iy e~ 2ad
will have the space-domain Green’s function of our problem. Ai(a) = 1 - lye20ha K- 6m (8a)
This can be done almost in a straightforward way by expanding [p[pe20hn o—2aH
the terms by multiplying the exponentials in (1) as a sum of Aa(a) = 1T Tho—2ahm T 7 1 (8b)
complex exponentials. The arguments of the exponentials and ok _%Zhw G_QQ(HId)
the coefficients of the expansion can be computed by using As(a) = Tye _1 — - 6_ (8c)
spectral estimation methods. In this paper, we have used and 1-Dplye?atae —em2all -
compared the Prony’s method employed in [20] and the MPM,
as reported in [24]. being
A caution should be exerted when we are considering €1 — €M1
structures having a top ground plane in addition to the bottom K=———

one. In such a case, the spectral functions to be approximated eEM teEpM—1

are Singular at the pOIrIt = 0. This behavior comes from the|n all the above expressior&: 1 in the presence of a top
following factor: ground plane, and = 0 if there is no top ground plane.
1 1 The first two terms at the RHS in (7) correspond to the
~ , a—0 source point and the first real image. The spectral functions
1-Tplyem2eme = 20H[1 + a(2d — H)] Ai(a){i = 1,2,3} can be expanded as sums of complex
(4) exponentials. These terms can be viewed as the contributions
~ M1 of certaincomplex imagedollowing the terminology in [20].
where H = ey XL, (hi/ei) andd = e ;1" (hi/ei)- A Usually just a few of thesgomplex imagesre enough to
homogeneous structure with relative permittivity; having get a very accurate representation of the Green’s function.
two ground planes separated by a distadtéas a spectral Therefore, after approximating thé; coefficients in (8) as

Green's function that can be expressed as follows: short series of complex exponential functions with arguments
1 (—ab,) and amplitudess,,, we obtain from (3) and (7) the
Grlely,y') = G [ty following space-domain Green’s function:
_oely| _ pollyy'|-2H) | a(yty/'—2H)
[ c +e ] (5) G($7y|$/7y/)
The Green’s function in (5) and the original one have the _ _ 1 n[(z—a)2+ (y—y)? EM —EM-1
same behavior around the = 0 point. In addition, the 4rege pr y=y EM F+EM+1

space-domain Green’s function for the homogeneous structure

. AV N2
Gr(z,yl2’,y") is known in closed form: Inf(z = 2")"+ (v +v)7]

Ne;
£ Balnle - o)+ (y = ibnﬁ}
n=1

Gib($7y|$/7y/)
1 1
= § GL 1o
dmepeps + { w(z,yle’,y') + rTa—

cosh [r|z — «'|/H] — cos [7(y + v/)/H] 6
n{cosh[7r|a:—a:’|/H]—cos[w(y—y’)/H]}' © -ln[(a:—a:')Q—i-(y—y/)Q]} 9)
Expression (6) can be considered as the first contribution to
the complete Green’s function of the layered structure. ThéereN.; is the total number of employed complex images.
additional terms are expressed in the spectral domain as €@ce again, the term affected by the factan (9) is present
difference between (1) and (5). The terms of this spectr@nly if we have a top ground plane. This term does not
function have no singularities at= 0 and can now be treatedpresent a logarithmic singularity in the definition domain
without problems. and, therefore, will not lead later to integration problems.
In brief and after some algebra, the spectral-domain GreefNgvertheless, in the computer implementation of the code, we
function for the layered structure can be written in the followhave extracted out not only the singular term, but also the first

ing useful form: two real images (reflections on the top and bottom ground
planes) in order to avoid lengthy integrations when the source

Glaly,y) and field points are very close to the ground plates.
B 1 —alyy'| | fromaH) | 4 -l Hy) In order_to get some |n3|ght_about Fhe f_eature_s of the
" 2ae0enm {e + e +Ae approximation we are using, we include in this section some

numerical examples. Thus, Fig. 2 shows the relative error
when a typical spectral function—such as the ones found
- co—ly=vl ) in our problem—is approximated by an increasing number

2ae0e of complex images. In this example, we have approximated

+ Ag(em =¥ 4 eoly=v'ly 4 ggerluty)y

+ 6 éh(a|y7 y/)
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Tw " 2
"= 1— t—to
()
where ¢ stands for ther or y variable (for horizontal and
- vertical conducting faces, respectivelyy,is the middle point
0 2 4 6 of the interval where the charge density is approximated, and
-1 ny is the number of retained basis functions on that face.
a (mm ) An important point is that the functions in (10) only partially
(b) account for the singularities at the corners. However, they
Fig. 2. Relative error in the approximation of a typical spectral functioRllOW us a quick filling of the Galerkin matrix. This is because
in our problem by using (a) Prony’s method, and (b) MPM. We presegtome of the required integrations can be performed in closed
Icurves for_2—5 co_mplex image§.z (o) corresponds to a single dielectric form. When we use the Green’s function in the form given in
ayer (¢, = 2,h; = 1 mm) on a perfect ground plane. . . .
(9) and the basis functions in (10), we have to carry out the
following integrations:

108
10°
10-10
1 o~11

100 Green'’s function. Now we have to solve the integral equation
T 100 4 oy EY for the surface free-charge distribution on the rectangular
EJ 102 - conductors by using the Galerkin method. It is well known that
1100 the efficiency of this technique depends to a large extent on the
S_il 104 suitability of the chosen basis functions. In our particular case
= 405 | we should use functions accounting for the singular behavior at
e s the metallic corners. Nevertheless, we have chosen a different
'g 107 criterion. We are more interested in using functions leading
® o to closed-form formulas for the elements of the Galerkin
2 109 4 matrix in order to speed up the filling of such a matrix.
< 100 But, in addition, the number of functions needed to get a
x . given accuracy should be kept as low as possible. These
10 two goals can be achieved by using each of the faces of the
@) rectangular conductors or the basis functions usually employed
10° : : to approximate the charge distribution on zero thickness strips:
5 107 Nci = Number of complex images first-kind Chebyshev polynomials weighed by the Maxwell
g2 ' distribution. In this way, for a given conducting face of width
= 10 .
| qp2 w we write
S o g t—t
— 5 | T —to
5 ¢ T 2 & "\ w2
-g 10% 3 o(t) = — Z C (10)
c 107 -
o —~
2
2
[}
02

I'r(«)—T'r(00), which is the sole function to be approximated . <t’ - to)

when de_allng with the standard m|crostr|p structyre. Th% In [(a:—a:')2+(y:|:y’:|:bn)2]- w/2 g

complex images have been found by applying Prony’s methq - ¥t 2

[Fig. 2(a)] and the MPM [Fig. 2(b)]. From these figures we — <—>

conclude that no more than four or five images are necessary to w/2

get a very good representation of the original Green’s function (11)

n the spectrgl domain and, th_erefore, in the space dom.a\}vr}ieret’ stands for’ or¢/. The integrals in (11) can be written

Fig. 2(b) also includes the function to be approximated. Notice ; )
T in_terms of the following one:

that although the Prony approximation is more accurate when

« increases, the use of the MPM seems to be advisable ! ) »(1)

because this approach yields better results in the region where In (2 +tz +j23)ﬁ dt = f(z1,22,23). (12)

the approximated function is meaningfully different from =

zero. This feature has been confirmed for a large numbEhis integral has a closed form and can be expressed as

of numerical examples. In brief, we conclude after a lot dpllows:

numerical tests that just a few images computed with theCase a)(p > 0):

MPM will ensure a high-quality approximation to the required T

space-domain Green’s function. f(21, 22, 23) = _;[5(7‘172277’3)11) (13a)

t0+w/2

IV. APPLICATION OF THE GALERKIN METHOD Case b)(p = 0):

In Section Ill, we have described a simple method to obtain fz1,22,23) = wln {_—72} (13b)
an approximate closed-form expression for the space-domain 26(21, 22, 23)
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where TABLE |
Ci1 (4+) anp C'y2 (—) (pF/m) FOR THE STRUCTURE IN THE
FIGURE AGAINST THE NUMBER OF BASIS FUNCTIONS ON VERTICAL

5 q 2 N¢) AND HoORizoNTAL (N ) CONDUCTOR FACES. w = 1,
£(21, 22, 23) = _Atiz \/<M) _ 1 s(:tt): 0.2, by =3, hg = % (mm). cp1 = 2.5, g0 = 10
z2 z2 Nt

. . . 1 2 3 4 5
(The sign before the square root is chosen in such a way that 1191069 | 21155 | 21184 | 211.92 | 211.97
€] <1). -102.46 | -103.17 | -103.36 | -103.43 | -103.47
We must mention here that the real part of the integral in 21 916.70 | 216.85 | 217.11 | 217.12 | 217.14
(12) was reported by Fikiorigt al. in [1], and that we have -107.60 | -107.75 | -107.93 | -107.94 | -107.96
also essentially used the same technique to get the imaginary 3| 216.98 | 217.05 | 217.37 | 217.37 | 217.40
part of (12). Ny -107.66 | -107.72 | -108.01 | -108.02 | -108.04
The remaining integrations (inner products with the test 4 217.01 | 217.06 | 217.38 | 217.39 | 217.42
functions) can now be carried out by using low-order -107.68 | -107.73 | -108.03 | -108.03 | -108.06
Gauss—Chebyshev quadratures. If a top ground plane is present 5 211077 1706 211077 17'; 21102':& 2122"3 21&%%

we have to still account for the contribution of tiseterm - — —— = =

in (9). This is easily done performing a double low-order
Gauss—Chebyshev quadrature, owing to the mathematical £
nature of the integrand. The final result is that the Galerkin n
matrix is filled with low computational effort. This could

also be done for simple subsectional pulse or triangular basis l W A |
functions. The advantage of using the functions in (10) is that t

we do not need too many of them to get very accurate results, " N N/
as will be shown in the Section V. Therefore, the Galerkin-

matrix size will be small and the overall computation time L ™

will be low.

V. NUMERICAL RESULTS

As a first step in the analysis of the numerical behavig@rogram also yields virtually exact results because for the zero
of the proposed technique, we have identified the differefitickness case, it is a quasi-analytical microstrip solver (such
factors affecting the accuracy of the final results. In Section I&s the methods reported in the cited papers), with extremely
we said some words about the computation of the spadew central processing unit (CPU) time consumption. This
domain Green’s function. Since this function is numericallgxcellent performance is related to the nature of the used basis
computed by means of an approximate method, its valugctions—which are especially suitable for zero thickness
will be affected by a certain error. However, this error can ®irips—and to the analytical treatment of the computation of
systematically reduced by increasing the number of compléhe Galerkin matrix entries. Therefore, as a subproduct of our
images. In fact, just a few of these images ensure a relat@ealysis, we have an extremely efficient code for the analysis
error well below one part in ¥0in the whole range of of zero thickness coupled strips available. Nevertheless, in
interest. Another source of error of numerical type can Bbe context of this paper, we are more interested in the case
found in the evaluation of the numerical quadratures neededofononzero thickness strips. Therefore, we show in Table |
compute some integrals. After a lot of numerical experimenti§ie convergence of the capacitance coefficients for a pair of
we concluded that very good results will be obtained bipick coupled microstrips. From Table |, we can see that
using a number of quadrature points exceeding in two tigenvergence is not so good as the one we achieved in the
order of the higher order Chebyshev polynomial used &nalysis of zero-thickness coupled strips [2]. The reason for
the basis-function’s expansion. In the case of inner produdtss is that the employed basis functioths notexactly fit the
corresponding to functions defined on touching strip segmentsrner behavior. However, these functions are very good from
this number should be increased to 10. With this choice, vaepractical point of view: two basis functions per strip side
do not detect errors associated with erroneous computatiorytfld results with an accuracy better than 0.3%. Of course,
definite integrals. the number of basis functions has to be increased when

However, the main factor affecting the accuracy of thédhe geometry is more critical (for example, when coupling
final results is the number of basis functions retained in tlietween the strips is extremely strong or in other geometrically
expansion of the free-charge distribution. We are interestedmplicated situations). Nevertheless, we usually obtain very
in getting good enough results with few basis functions ggnod results with just a few basis functions per strip side.
as to keep the size of the Galerkin matrix small. Obvisetting similar accuracy with subsectional-type basis functions
ously, our computer code permits us to consider the caseuld require many more basis functions, therefore increasing
of zero-thickness strips as a particular case. We have mdde CPU time.
comparisons of the results provided by our code with otherAfter analyzing the convergence of the method, it is in-
practically exact results reported in the literature [1]-[3]. Oueresting to check the typical attainable accuracy using some
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TABLE I TABLE 1l
Zo OF A SYMMETRICAL SHIELDED SLAB LINE Ny ¢ IS THE NORMALIZED RESISTANCE OFRECTANGULAR SLAB OVER GROUND PLANE AS A
NUMBER OF BAsIs FUNCTIONS W = SLAB WIDTH. t = SLAB FUNCTION OF THE NUMBER OF BASIS FUNCTIONS (nf) ON EACH STRIP SIDE
THICKNESS b = SEPARATION BETWEEN GROUND PLATES AND OF THE A{ INCREMENT USED IN THE NUMERICAL DERIVATION SLAB WIDTH
= 2a, SLAB THICKNESS = a, DISTANCE TO GROUND PLANE = «a
W/(b-t) | t/b | Exact [25] | Ny =8 | Ny =3 [ Ny, =1
0.1 |00 | 194226 | 194.226 | 194.226 | 194.226 . - aR/ LA - —
01 | 01| 145665 | 145665 | 145.676 | 146.137 nf | Al=ax107" | ax107"} ax107 | ax 10

01 |05| 83262 | 83261 | 83.270 | 83.413 1 0.23541 0.23394 | 0.23392 | 0.23392
01 |09 | 43079 | 43.074 | 43.085 | 43.679 2 0.23542 0.23395 | 0.23393 | 0.23393
02 |00 | 153.029 | 153.029 | 153.020 | 153.030 3 0.23757 0.23607 | 0.23605 | 0.23605
4
5

0.2 0.1 | 123.293 | 123.293 | 123.304 | 123.747 0.23758 0.23608 | 0.23607 | 0.23607
0.2 05| 75.928 75.928 75.937 76.165 0.23758 0.23608 | 0.23606 | 0.23606

0.2 0.9 41.054 41.050 41.063 41.529

_ Ref. [29
appropriate benchmark. We can use as a benchmark the 7 . Tﬁisf,volk

rectangular slab symmetrically placed between two infinite 841 o HFss™
ground planes, since for this structure there exists an ana-
Iytical solution. Table Il shows the comparison between exact
solutions taken from [25] (conformal mapping approach) and
numerical values computed with our method. It is clear from
this table that our method can provide very high accuracy if
we use enough basis functions. However, even using just one
function on each side of the slab, we get results within a 0.4% 21
error except for the worst caseé/{ = 0.9), where the error 1 L LB e e
is around 1.5%. In this case, using just one more function on 2 3 4 5 6 7 8 9
the long sides of the slab results in a drastic improvement Frequency [GHz]
of the accuracy (Ie,ss than 0.02% error). Other cqmparlso[pgs. 3. Attenuation factors for the fundamental quasi-TEM modes of the
have been made with some exact results reported in [26] Witr microstrips system analyzed in [27]. Strip widthsi = ws = 0.6
similar conclusions. Convergence to the correct value has them, w2 = ws = 0.3 mm, separation between strips: = s3 = 0.3 mm,
been demonstrated. Note that this point is important singg= 0:2 MM, strip thicknesst = 0.01 mm, substrate thickness: = 0.635
. . . . mm, height to coverd = 6.0 mm, ¢ = 9.8¢p, 0 = 5.1-10" S/m

our basis functions do not exhibit the rigorously correct edge
behavior.

In [.19]’ the quthor presents a technique k_)aseq on spect lcine as a function of the number of basis functions used on
domain analysis (SDA) to compute the quasi-static paramet S

; . i ch strip side. The result is close to the one reported in [13]
of boxed coupled strips of arbitrary thickness. We have mal E/R — 0.23753). We have included several columns to
comparisons with the results reported in [19] and we ha N ’

. ow how theA¢ increment used to numerically perform the
found very good agreement. In particular, we have comput

th dal i ft tiahtl led stri hi rivation affects the final result. We can typically chodsg
€ modal parameters ol two very tightly coupied Strips, WhiCly, ,q 163 times the smallest dimension of the conductor.
cannot be efficiently treated by using the simple multistri

del red in 115 laimed in 1197). O it ®he result remains stable for lower values &f. Note that
model reported in [15] (as was claimed in [19]). Our resu S tfie derivative is very accurately computed even though the

very accurate for this case ceven using only two basis. fgnctiq Hginal function is affected by a certain error, since this is
on the faced sides of the strips and one on the remaining si egystematic error that affects in the same magnitude the

(0.2% error). This results in CPU times much shorter th%bo values of the function required to numerically perform

the ones reported in [19] (ours is below 1 s on a 66'MH§1e derivation. Recently, Gentikt al. [27] have reported a

pegnum-based PC)'b dt lculate th ist technique to compute the modal attenuation factors & =
ur program can be used 1o calculate the resistance maifix, -, N.) for a multiconductor line. The values of the,

[R] of the multiconductor system just applying the Wheeler’ﬁarameters can be readily obtained from the characteristic ma-

rule, such as discussed in [21): trices computed in this paper. This way, we have compared our
results with those reported in [27], with very good agreement.
[R] = R, O[L] For instance, we show in Fig. 3 the four modal attenuation
po € factors corresponding to the fundamental modes supported by
a four-coupled-strip lossy system. Our results are very close
where R, is the surface resistance of the metdl] is the to the ones computed by the method proposed by Gentili
inductance matrix, and is the coordinate variable normal toet al. (slight differences could be attributed to the side walls
the conductor surface. The derivative is numerically computezhnsidered in that paper), but some important discrepancies
so we only need to accurately compuyig. Table Ill shows have been found when comparing the results computed by
the normalized resistance for a rectangular slab on a grouméans of a finite-element-based code.

Attenuation [dB/m]
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TABLE IV
CoerFICIENTS OF[C], [L], AND [R] FOR THE FIVE CONDUCTORS' STRUCTURE IN THEFIGURE. w = 3, s =2, h = 1,t =1 (mm), &1 = 2,5,2 = 1.
Cij(pF/m) | Lij(pH/m) R/R,

93.668 19.781x10-% | 0.1885
-8.453 2.946x10~2 | 0.1347x10!
-0.809 0.735x10~% | 0.4600x10~2
-0.345 0.284x10~2 | 0.2657x10~2
-0.215 0.152x10~2 | 0.1605x10~2
95.329 19.471x10-2 | 0.1939
-8.318 2.883x10~2 | 0.1459x 101
-0.758 0.717x10~2 | 0.4879x10~2
95.341 19.458x10-2 | 0.1941

WANNN e e ] -
WhWN OB WN R

Finally, Table IV shows the elements ¢f] and [L] for can be treated by applying the same general ideas reported
a five-coupled-strip system. All the figures in Table IV ardere.
correct. We have used 15 basis functions on each strip side,
i.e., a total of 300 basis functions, to ensure the accuracy of REFERENCES
these reSUIts' This results in a computation time of 75s o ] J. G. Fikioris, J. L. Tsalamengas, G. J. Fikioris, “Exact solutions for
a Pentium PC/66 MHz. However, accuracy better than 0.2%" spielded printed microstrip lines by the Carleman-Vekua metH&&E
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